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Kurzbeschreibung

Die Suche nach Nachbarknoten, auch Discovery genannt, ist eine Grundvoraussetzung
für die Kommunikation in mobilen Ad-hoc Netzwerken (MANET). Eine spezielle Art
von MANET sind die “Pocket Switched Networks”, Netzwerke die zwischen Geräten
aufgebaut werden, die Menschen bei sich tragen. Diese Netzwerke können dafür genutzt
werden, die steigende Last auf Infrastrukturnetzwerken wie GSM oder UMTS abz-
ufangen. In dieser Masterarbeit wird ein adaptives Discoveryverfahren vorgestellt,
dass menschliche Mobilität aufzeichnet und ausnutzt, um die Suche nach Geräten zu
verbessern. Das Verfahren basiert auf der Identifizierung von relevanten Orten und
der Vorhersage zukünftiger Mobilität. Durch Kontextinformationen des Ortes wird der
Intervall, in dem die Discovery gestartet wird, dynamisch angepasst, um mit möglichst
wenig Stromverbrauch eine große Anzahl an Geräten zu finden.

Abstract

Discovering neighboring nodes is a prerequisite for data transfer in mobile ad-hoc net-
works (MANETs). “Pocket Switched Networks” are a special kind of MANET, in which
the participating devices are carried by humans. Pocket Switched Networks can be
used to lessen the strain on infrastructure networks like GSM or UMTS. This thesis will
describe an adaptive discovery scheme, which logs and uses mobility data in order to
improve the discovery. The scheme is based on identifying places of interest and pre-
dicting future mobility. Using contextual information of the current location or path,
the discovery interval can be adapted dynamically to discover as many neighboring
nodes as possible, but with limited energy consumption.
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1 Introduction

1.1 Discovery in Delay Tolerant Networks

“Delay Tolerant Networks” (DTN) are a special kind of network where nodes may
not be connected at any given time. Routes may have a very long delay and the net-
work might partition regularly. Thus, these networks work according to the “Store
and Forward”-principle, meaning that they may temporarily persist network packages
to send them to further nodes later. This stands in contrast to “traditional” proto-
cols like TCP/IP. DTNs are a fairly recent research topic, mostly based on previous
research on ad-hoc networks. Environments where DTNs may be used include mobile
networks, interplanetary or deep-space networks, military ad-hoc networks or sensor
networks[Fal03].

Special subtopics of delay tolerant networking have been defined, mostly based on
several characteristics of the network. “Pocket switched networks”[HCS+05] has been
used as a special term for opportunistic networks between users of small mobile appli-
ances, allowing them to send and receive data in environments without infrastructure,
bridging the way into larger networks through local wireless technologies like Blue-
tooth or WiFi. “Participatory networks”[BEHP06] act similarly in that they try to incor-
porate the users mobile devices. Participatory sensing is a special case in which mobile
devices gather sensor information, either using their own built in sensors or receiving
them from nearby sensor systems.

The popularity of modern smartphones makes participatory systems especially inter-
esting, because these devices often include sophisticated sensor systems, high process-
ing capabilities and network connectivity via Bluetooth, WiFi and mobile broadband.
These devices are able to replace specialised hardware installations in certain situations.

One especially useful feature of most smartphones is their location awareness. Some
routing protocols in opportunistic networks are able to exploit this information to in-
crease performance, e.g. by calculating the best route depending on proximity to neigh-
boring nodes. This idea is already used in certain sensor networks which forward

5



CHAPTER 1. INTRODUCTION

packets to nodes who can serve the most additional area[WC02]. Several other pro-
tocols used in delay tolerant networks use encounter information, forwarding to nodes
with a higher probability of coming in contact with the destination node. More recent
routing protocols even try to use social information of the networks participants, iden-
tifying peer groups and popular peers[HCY10].

There are common problems in participatory networks and traditional sensor networks.
The most prevalent is energy efficiency, based on the fact that mobile devices run on a
battery. Most network connections are expensive in terms of energy consumption, mak-
ing it necessary to let them run as briefly as possible. Another problem in opportunistic
networks is neighbor node discovery. Knowledge of nodes in proximity is essential
before initiating any kind of data transfer. Bluetooth and WiFi include discovery mech-
anisms which are costly in terms of processing and battery power, they should therefore
be issued as rarely as possible.

This thesis proposes a dynamic discovery of neighboring nodes, based on location in-
formation stored in the mobile devices. Location information, along with additional
routing-related data like encounters or time of day can be used to initiate neighbor dis-
covery only when it is deemed useful. The interval and duration of discovery can be
adjusted based on the current nodes’ location and the location of nodes it has encoun-
tered. Along with the dynamic discovery, an application architecture will be described
which is able to run dynamic discovery mechanisms and provide mobility and contact
data to other applications.

The system will run on an Android smartphone, using Bluetooth for neighbor discov-
ery. Evaluation will be done based on logging data captured over a period of about 3
months.

1.2 Overview of this thesis

The second chapter will provide an introduction to the general research space of Delay
Tolerant Networking. It will provide information on human mobility and its signifi-
cance for a special kind of DTN: Pocket Switched Networks. Human mobility will be
described in terms of metrics relevant to these networks. The following sections de-
scribe ways to model and predict mobility, which will be the basis of the discovery
scheme proposed in this paper. Afterwards, some algorithms related to discovery and
mobility will be described. The chapter ends with some general information on discov-
ery using Bluetooth, which is the technology used to evaluate the proposed scheme.
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1.2. OVERVIEW OF THIS THESIS

The third chapter describes the approach the discovery scheme will use to exploit con-
tact patterns at specific locations. Here, the relevancy of some of the metrics described
in chapter 2 will be assessed. To filter relevant locations, a spatial clustering algorithm
is described. The clustered locations are the basis for a mobility prediction algorithm
described afterwards. Finally, the approach to adapting the discovery to the location
history is described.

The fourth chapter will describe the application used to capture contact and location
data. The description includes the data model and the application architecture. The
chapter ends with a description of the discovery scheme implementation.

In chapter five, the algorithms described in the third chapter will be evaluated, based on
the data captured by the application outlined in chapter four. The evaluation includes
the clustering and mobility prediction, and the discovery scheme will be compared to
the scheme it is based on.

At last, the insights gained in the development of the scheme will be discussed.
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2 Discovery in Delay Tolerant Networks

Neighbor node discovery is a requirement for data exchange in highly mobile net-
works. Improving discovery times leads to more throughput in the network, but the
discovery process itself is often a strain on other resources like battery power. Adapting
to properties of the network is one way to decrease power consumption. The following
chapter will consider discovery in delay tolerant networks, with a focus on networks
driven by human mobility. These networks are established mostly between devices
carried by users, though some of them may provide network links to infrastructure
networks. The first part of this chapter will identify some of these networks and their
use within the larger research space of delay tolerant networking. The next part focuses
on human mobility and its impact on networking. The following parts will provide in-
formation about adaptive discovery algorithms and the discovery process in Bluetooth.

2.1 Delay Tolerant Networks

Delay Tolerant Networking was first described in [Fal03] as a means to bring intra-
and inter-network connectivity to areas where typical network protocols and architec-
tures like TCP/IP are not appropriate. Networks in these areas may experience long
delays or faulty connections, and participating devices may have very limited power
or computing resources. The idea of connecting these networks with more reliable net-
works like the Internet led to an architecture that incorporated the idea of optional
reliability and asynchronicity. DTNs were envisioned for a large number of uses, in-
cluding near-Earth satellite communications, deep space communications, terrestrial
mobile networks or sensor networks.

Delay Tolerant Networks operate on the “Store and Forward”-principle by storing data
on the local device and opportunistically transmitting it to neighboring nodes based on
some forwarding scheme.

Pocket Switched Networks are considered a part of the Delay Tolerant Network re-
search space [HCS+05]. They are used to transfer data between the mobile devices of
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2.1. DELAY TOLERANT NETWORKS

(a) Mobile Data Traffic (b) Offload Traffic

Figure 2.1: Forecasts of mobile data traffic and offload [Cis]

users in an opportunistic way. PSNs were first proposed as a way to enable network
connectivity between “connectivity islands”, such as WiFi at home or at work. While
commuting between these locations, data transfer may be slow or expensive or may
not be available at all. Unused processing power and network bandwidth, for example
via WiFi or Bluetooth, may be used to establish networks without an external infras-
tructure. Hui, et al “envision a world where these resources can be used to provide net-
working functionality alongside access networks, and where users’ applications make
use of both types of bandwidth transparently.” [HCS+05]

The target devices of PSNs are those carried by users which are active all or at least
most of the time. These devices include mobile phones, PDAs, Laptops and, more
recently, Smartphones. The surge in smartphones sales is expected to continue, impact-
ing the current mobile data infrastructure. The number of mobile phones is expected
to surpass the worlds population during 2012 and global mobile network traffic will
increase 18-fold between 2011 and 2016[Cis]. The increasing number of mobile phones
also results in more density, which can be exploited by deploying infrastructure-less
networks. Pocket Switched Networks may therefore be able to ease the strain on the
infrastructure by offloading traffic or disseminating data to nearby nodes. Most smart-
phones switch to a available WiFi network when the opportunity arises, which already
offloads much of the data traffic produced by mobile and portable devices.

In [MW11] the authors use a hybrid routing system to integrate networks with and
without infrastructure. The routing is determined on a per-message basis, with the
local delay tolerant network being the preferrable data carrier. Messages are routed to a
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CHAPTER 2. DISCOVERY IN DELAY TOLERANT NETWORKS

single recipient on the idea of “assurance of successful delivery through infrastructure”.
DTN routing is performed as long as its delivery is deemed likely within the time-
to-live (TTL) of the message. If the TTL is nearly elapsed, the infrastructure is used
for delivery. In the case of a network where all devices are capable of using ad-hoc
communications as well as the infrastructure, the system is able to offload 36% of traffic
under a TTL of 5 hours.

[WAL11] discusses a framework for data dissemination that guarantees short delivery
delays. The system uses acknowledgements to determine if new copies the data to be
disseminated should be injected into the opportunistic network. Content is propagated
epidemically from a subset of nodes that keep track of delivered content to determine
if additional copies need to be injected into the network.

Han, et al [HHKM10] also propose a system for data dissemination. Here, a content
provider chooses a set of users to which it sends data. These users deliver the data
to other subscribers through opportunistic networking. If a user does not receive the
data in a certain amount of time, the service provider will deliver it directly through
the infrastructure.

2.2 Human Mobility

This section will provide some insights on human mobility in mobile networks. First,
several properties of human mobility in regards to networking contacts will be de-
scribed. These properties were identified in several studies which analyzed real-world
mobility data in order to provide researchers a number of metrics relevant to ad-hoc
networking. Afterwards, research in the field of mobility modeling and mobility pre-
diction will be presented. While mobility modelling is especially useful in simulations,
it is also the basis of some mobility prediction algorithms.

2.2.1 Properties of Human Mobility in Mobile Networks

There are a several metrics that are of interest when talking about discovery in wireless
ad-hoc networks with mobile users. The following section will provide an overview
of some, based on a study done by the National University of Singapore[NM07]. This
study used 12 devices, of which 9 were mobile and 3 were stationary, to probe for
neighboring nodes using the Bluetooth protocol. The mobile nodes were used by stu-
dents and faculty members of the university. The devices conducted a bluetooth dis-
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2.2. HUMAN MOBILITY

covery process every 30 seconds. Logging was done for four months, producing about
350.000 log events and discovering over 10.000 unique devices. A previous study by
Chaintreau, et al[CHC05] only referred to inter-contact and contact time. It analyzed 4
different data sets, two for bluetooth and two for WiFi traces.

In conclusion, the researchers found that several metrics approximately follow a power
law. Plots for a selection of metrics can be seen on 2.2 on page 13. The analysed metrics
are as follows:

Contact time is the duration in which two devices are in contact, meaning that they are
in communication range. Longer contact times lead to more potential throughput
and therefore more data exchanged during each contact. The analysed dataset re-
vealed that contact time is one of the metrics following a power law, where “80%
of the contacts are short in duration lasting less than 9 minutes.”[NM07] Contact
times are also independent of user behavior, with the mean slope of distribu-
tion having a variance of 0:02 across mobile users. Other experiments also found
the contact time to follow a power law, although with varying decay coefficients
[CHC05, MV03, SCP04].

Inter-pair-contact time describes the time between two devices being successively in
contact with each other. If a pair of devices is only in contact once, their inter-
pair-contact time is infinite. Ths metric is useful for DTN applications because
it potentially influences the choice of a forwarding algorithm “to maximize the
successfull transmission of messages in a bounded delay.” [CHC05] Based on
the datasets acquired in the aforementioned study, this metric does not seem to
follow any power law. The slopes for different users were also fairly different. The
authors speculate that this may be due to individual behaviour of the participants.
Nevertheless, it also found that 80% of inter-pair contacts occur within two hours.
Some differences between Bluetooth and WiFi traces were suspected to be due to
the more mobile nature of the Bluetooth devices, which were carried all the time.
This also indicates an opportunity for highly mobile devices like smartphones.

Inter-contact time is the time between two successive contacts for a single device to
any other device. This metric also follows a power law, with 80% of inter-contact
times occuring within 40 minutes. Furthermore, most inter-contact times were be-
tween 4 and 13 minutes when constraining the data to workdays between 8AM
and 8PM. This metric determines the frequency in which a mobile node can ex-
change data, and may also be useful to infer the penetration of appropiate mobile
devices.
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CHAPTER 2. DISCOVERY IN DELAY TOLERANT NETWORKS

Meeting time identifies the time when a device is continuously in contact with at least
one other device. Meeting time depicts the aggragation of groups. It is also ap-
proximately distributed according to a power law, with 80% of meetings lasting
less than 30 minutes. Understanding the way people aggregate in groups can be
inferred from this metric.

Inter-meeting time is the interval between two meetings for a given device. This is
also approximated by a power law and is similar to the distribution of inter-pair
contact times.

Meeting size describes the number of devices that are in contact during a meeting. The
study found that meeting time correlates to meeting size, with meetings of size 1
(2 devices) lasting 13 minutes on average and meetings of size 2 and above lasting
17 minutes on average. 80% of meetings were of size 1, while 80% of contacts
were made in meetings of at least size 2, implying that aggregation centres are
potentially useful for DTN applications.

Average Instantaneous Meeting Size is computed for every meeting “by weighting
each device in the meeting by the fraction of time for which that device was in
contact with the probe.” [NM07] A low value identifies a dynamic environment,
while values near the meeting size depict a fairly static meeting. Most meetings
had this value at about 1, meaning that users are mostly discovered in dynamic
environments. This implies that data exchange should be immediate, because
every device may leave the meeting quickly.

The study also tried to find patterns in the mobility based on the time of contacts. In
particular, the researchers found that most participants had a clear diurnal schedule,
with no devices discovered between midnight and 8AM. Apart from this, the variance
of discovered devices was large during other times of the day. When analysing the
number of contacts made on each day, there was also a large variance. This indicates
that estimations based only on time of day are not sufficient. There was also no clear
distinction in devices discovered on weekdays and weekends. This was further elabo-
rated in [WSM07], where the traced data was used as a basis for an adaptive discovery
mechanism (See figure 2.3).

[NM07] also considered commonality, which is computed between subsequent pairs of
time. Considering two times ti and ti+1 and Ai as the set of users discovered at time ti,
the commonality is given as the fraction of devices seen at both timeslots:
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2.2. HUMAN MOBILITY

(a) Contact Time (b) Inter-Pair-Contact Time

(c) Inter-Contact Time (d) Meeting Time

Figure 2.2: Plots of metric distribution[NM07]
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[WSM07]

Ci =
|Ai

⋂
Ai+1|

|Ai
⋃

Ai+1|
(2.1)

The timescales considered are (1) subsequent hours of the same day (HSD), (2) sub-
sequent days (SD), (3) specific times on subsequent days (STSD), (4) specific days of
the week as well as (5) specific times on the same day of the week (TDW). The frac-
tion of identical devices seen on these timescales are shown in 2.1, which indicates that
the chances of discovering the exact same device again decreases when more time has
elapsed since the last discovery of this device was made.

Time Scale Maximum Commonality

HSD 0.2
SD 0.14

STSD 0.07
DW 0.04

TDW 0.03

Table 2.1: Maximum Commonality across different time scales[NM07]

In [CSTC12] the authors investigated regularity in collected data traces of 10 users over
two months. They found that participants spent 85±3% of time staying in one place and
only 13±3% of time moving. Places were identified using a system called SmartDC,
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2.2. HUMAN MOBILITY

with which locations were identified either by location data from GPS, the network
location based on the currently connected cell towers or with WiFi fingerprints. This
indicates a certain regularity in human mobility, which some researchers try to emulate
with the help of mobility models.

2.2.2 Modeling Mobility

Algorithms in mobile wireless networks can be evaluated by simulating mobility. These
simulations use underlying mobility models, which should be as realistic as possible.
Mobility models can generally be categorized to be either synthetic or based on real
world traces. Synthetic models are usually described by mathematical models, which
simplifies theoretical analysis. Trace models are generated from deployed systems that
log data such as connectivity or location.

Real world traces like the ones mentioned in 2.2.1 on page 10 are rare and most of them
were released only recently. Although synthetic models are used in most instances,
they are problematic because they are prone to be unrealistic. This problem is especially
apparent when comparing them to real world traces. Initiatives like CRAWDAD[KH05]
try to provide traces for researchers to use, to reduce the problem of incorrect synthetic
models. This led to the creation of synthetic models based on traces, to simulate real
world scenarios[Mus09].

The most prominent purely synthetic models are:

Random Walk Mobility Model: This is the most prevalent model and also the sim-
plest. It models purely random movement. This may also be called Brownian
Motion.

Random Waypoint Mobility Model: This model extends the random walk model with
changes in speed and direction, as well as pauses in movement.

Other similar models are characterised by the nodes being independent of each other
and that movement is randomized. An extension of these models includes group mo-
bility. The groups of nodes are linked to each other by a set of equations. These models
are also unrealistic, because the underlying group movement is still based on a random
distribution. Groups are also hardwired in most cases, without the dynamics of nodes
joining other groups in the simulation.

Trace based models try to provide the same statistical properties as real world traces.
Researchers of the ETH Zürich devised a model by dividing the campus into squares
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CHAPTER 2. DISCOVERY IN DELAY TOLERANT NETWORKS

and deriving the movement between these areas from WiFi traces[Tud05]. The proba-
bility of user movement is represented as a Markov model. This is similar to Weighted
Waypoint Model, where certain waypoints have a higher probability of being chosen
as the next destination. Another approach studied the influence of user’s movements
based on the concept of a popularity gradient between Wireless Access Points[JL05,
LKJ06]. The evaluation was done with traces from Dartmouth College. One model dis-
cussed in [MSKY05] uses empirical data rather than wireless measurements to analyze
movement characteristics of pedestrians.

Both studies mentioned in 2.2.1 on page 10 found that most synthesized mobility mod-
els predicted an exponential decay in mobility metrics. The power law distribution
stands in contrast with this assumption, implying that some of the models may be un-
able to model real mobility. Karagiannis, et al [KB10] derived analytical results from 6
sets of traces. They verified the power law of inter-contacts time, though they found
that beyond about 12 hours, the cumulative distribution function exhibits exponential
decay. With the help of an analytical framework, they show that randomized, synthetic
models like the Random Waypoint model should not be abandoned. These models
are still able to represent characteristics of empirical traces. They also argue that op-
portunistic forwarding may still be relevant in this time scale of more than half a day,
where the decay becomes exponential, and some forwarding schemes may therefore be
too pessimistic.

Another approach to modeling mobility is based on the fact that mobile devices are
usually carried by humans, which enables the use of social networking concepts. Mod-
els based on social network research are often based on traces. Social networks are
characterised by a high level of clustering, which is not observed in other types of
networks[New03].

A mobility model based on social network theory is described in [MM06], where the
social network is a key input in creating a synthetic network structure. Movement and
mapping into a topographical space is driven by social relationships between individ-
uals. Definitions of different types of relationship during a certain time may also be
incorporated, to model the fact that work relationships may be more important during
work hours, for example.

In [EKKO08], a “Working Day” movement model is presented, which is able to closely
reproduce inter-contact times and contact times found in traces. The model is verified
and implemented using the ONE simulator[KOK09]. This model contains several sub-
models, from which one is chosen according to parameters. Submodules mentioned
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2.2. HUMAN MOBILITY

in the paper are, for instance, staying at home, working and evening activities. The
basic premise is that nodes modelled this way will chose a suitable submodel in certain
situations. For instance, the activity model for a nodes home will wake it up in the
morning, initiate a transport model for the node to go to work, which will be followed
by a decision if the node will move back home or do an evening activity.

2.2.3 Predicting Mobility

Mobility prediction is related to the way human mobility is modelled, but rather than
reproduce the significant metrics, a mobility prediction algorithm will try to infer future
locations based on these mobility metrics.

Anticipating user mobility is useful in a number of applications. It may be used in
context-aware applications to infer relevant information depending on the users loca-
tion. Some opportunistic routing algorithms also use knowledge of future locations to
determine the best forwarding strategy. It is also possible to proactively adapt duty cy-
cling of sensors to changes in location, and to predict contact opportunities in a spatial
or spatio-temporal manner.

Several methods of prediction have been proposed, with 4 of those being evaluated in
[SKJH06]. Here, the predictors are compared using a dataset from more than 6000 users,
collected over 2 years. The dataset records registration of users to WiFi Access Points
without any additional knowledge of the users mobility. All predictors are compared
on their accuracy to predict the users movement to the next cell, where each cell is
defined as the AP the user is registered to. The paper referes to each of these cells as a
location, although there is no knowledge of the actual location of a user (e.g. longitude
and latitude). For each user, a location history is constructed as a series of location
changes, or moves between different APs. These movements are domain-independent
in a way that they do not include the APs location or even timing information of a
location change.

The paper discusses Order-k Markov predictors, LZ1-based predictors and two predic-
tors called PPM2 and SPM3. The latter three are based on text compression algorithms,
due to the fact that they try to predict the next occuring letter based on previously en-
countered patterns. For the Markov predictors, values of 1 to 4 for the order k have

1These are based on an incremental parsing algorithm by Ziv and Lempel
2Prediction by Partial Match
3Sampled Pattern Matching
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CHAPTER 2. DISCOVERY IN DELAY TOLERANT NETWORKS

been studied, meaning that the prediction was based on a series of up to 4 previous lo-
cations. Additionally, a fallback mechanism for the Markov predictors O(2) and above
was used. In the case of no prediction, an O(k - 1) predictor would be used recursively
until a prediction is made or O(1) predictor failed to give a prediction. A predictors
accuracy is measured through the possible outcomes of a prediction:

• The predictor correctly identified the next location,

• the predictor incorrectly identified the next location, or

• the predictor failed to return any location.

The accuracy is the fraction of correct predictions, which means that an incorrect pre-
diction as well as no prediction are considered to be incorrect.

One basic characteristic of these predictors is that they faired poorly on short traces
(up to 100 movements), indicating a fairly large learning time requirement. Generally,
the lower order Markov predictors worked at least as well as the compression-based
predictors, while being less complex algorithmically. The fallback mechanism of higher
order Markov predictors also improved their accuracy significantly. O(2) Markov was
deemed the best predictor overall, due to its simple implementation, relatively small
space complexity and best overall accuracy.

More recently, Chon, et. al. [CSTC12] evaluated mobility prediction algorithms on fine-
grained, continuous mobility data. Here, the authors explore spatio-temporal behavior
of 10 users over a timespan of two months. They used a trace of mobility data with
room-level accuracy. Regularity in behavior was found to be high, with people spend-
ing 83±3% of time staying in place and 13±3% of time moving between places. People
also tend to stay in a number of frequently visited places. Stay duration in the top two
most frequented places is as high as 83±12%. Movement toward known places with
more than 3 previous visits is 69±7%. Figure 2.4 on the following page shows the reg-
ularity and predictability of human movement observed for the previously mentioned
trace of 10 users. A persons movement is considered predictable if a mobility pattern
has been observed previously.

Rather than predicting the next location the user will visit, predictors were evaluated
on their ability to anticipate stay duration. The study assessed a number of different
predictive algorithms, divided into two classes: (1) location-dependent algorithms and
(2) location-independent algorithms. For the former, a Markov-based predictor as de-
scribed before has been used. NextPlace and Jyotish (see section 2.3.3 on page 23) were
identified as location-independent models, from which NextPlace was chosen for anal-
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Figure 2.4: Regularity and predictability in human mobility[CSTC12]

ysis. Generally, the location-independent models only use temporal information while
the location-dependent models use only spatial information for prediction.

It is possible to add features to the predictors in order to improve results. These fea-
tures are useful to lessen the impact of non-predictable cases. For instance, higher-order
Markov-predictors could not be able to predict a next location if the sequence of pre-
vious locations has not yet been observed. Feature-aided schemes also extract patterns
based on additional information, thereby extracting this information from the dataset.
In [CSTC12], three types of feature-aided schemes are proposed:

• Time-aided schemes, which consider the time of arrival at a place to predict stay
duration. This is only applicable for location-dependent schemes because location-
independent schemes already consider time of arrival for their prediction.

• Return probability-aided schemes assume that people exhibit temporal regularity
in returning to certain places. For instance, a person might return home in the
evening at a specific time, regardless of their current location.

• Fallback schemes will use a different predictor in the case of none-prediction. An
O(2) Markov-predictor would use the O(1) predictor as fallback, for example.

The paper concludes that the location-dependent models are better suited at predicting
temporal regularity. Furthermore, the context of previous location visits does not aid
in predicting the stay duration in the current place. This is notable because as men-
tioned before, the O(2) Markov-predictor was deemed the most accurate for prediction
of future locations in [SKJH06], while the feature-aided O(1) Markov predictors were
deemed the best in [CSTC12] for prediction of stay duration.
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CHAPTER 2. DISCOVERY IN DELAY TOLERANT NETWORKS

2.3 Adaptive Discovery

Discovery schemes are an integral part of networks using ad-hoc communication. In
order to initiate data transfer to another network node, the node must be known to
accept connections and it must be in communication range. Discovery schemes, some-
times also called hello or beaconing protocols, are widely used in sensor networks, where
the sensor nodes often sleep for extended times in order to preserve energy. Some net-
work protocols widely used in computers or mobile devices provide direct support to
fnd nearby devices. Often, these device scans or inquiries require a large amount of
power and are therefore mostly initiated manually and only when specifically needed.
For instance, to transfer multimedia data via Bluetooth, the two participating devices
will usually have to be set to inquiry or inquiry scan mode manually. The data will the
be transferred, after the partner device has been discovered. Afterwards, Bluetooth will
often be deactivated. This direct and active transfer of data does not usually happen
in DTNs oder PSNs. Here, the data should be forwarded without user interaction. Of
course, this necessitates that the used networking technologies are active most of the
time. Device discovery has a significant impact in this situation, which is the reason for
developing adaptive discovery algorithms that try to run the costly device discovery
only when there is a chance that it will actually discover another device. The follow-
ing sections will describe some algorithms that can be used to adapt the discovery to
certain conditions, or infer the presence of contacts.

2.3.1 STAR

Wang, et al[WSM07] devised a heuristic algorithm called STAR4, which is designed
based on some of the conclusions of the study described in [NM07] (see chapter 2.2
on page 10). They also built a theoretical framework from which different algorithms
can be compared. This framework provides a theoretically best discovery interval for
a given rate of missed contacts. A contact is deemed to be missed when two devices
are in communication range but do not probe for the other device and therefore do not
know that it is in the vicinity. For a given rate of possible missed contacts, an optimal
probing delay can be found. Algorithms that have a shorter average probing delay for
this rate of missed contacts are deemed less efficient, especially in terms of used battery
power. The algorithms are therefore optimized based on the average probing delay.

4Short Term Arrival Rate
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2.3. ADAPTIVE DISCOVERY

The calculated probing delay is constant, and the discovery process will therefore be
started after a fixed amount of time.

The STAR algorithm computes an estimated rate of new contacts to be seen in a short
timespan. STAR exploits the observed behavior that new contacts are more often seen
fairly close together in time. Conversely, there are times when no contacts are seen
for several hours, for example during nighttime. The algorithm may have a really low
probing delay during certain times of day, though its average is still low because of
long delays during other times. The arrival estimate rises according to a power law
when new contacts are seen and falls linearly when none are seen. The algorithm also
incorporates the fact that nearly no contacts are seen between midnight and 8AM, and
therefore increases the estimated arrival rate at 8AM. This increase counters the fact that
the discovery interval will probably increase to the maximum value of 1800 seconds
during the night, which would make a discovery in the morning unlikely.

2.3.2 eDiscovery

In [HS12] the eDiscovery algorithm is proposed, which aims to improve the energy cost
of Bluetooth-based node discovery. The paper describes three approaches for control-
ling the Bluetooth inquiry process,

• the length of the inquiry window, i.e. the time one inquiry process runs,

• the number of inquiry responses received during the inquiry window, and

• the interval between subsequent inquiries.

The basic Bluetooth discovery process will run for 1,28 seconds, repeated for a specified
number of times, which is usually 8 in standard implementations (see section 2.4).

The algorithm focusses on the inquiry window and inquiry interval as parameters, with
initial values of 8 for the inquiry window (8 ∗ 1, 28s = 10, 24s) and 10 seconds for the
inquiry interval. The inquiry window parameter will remain at 8 as long as the inquiry
discovered more than a specified number of peers, designated as N. In case of a lower
number of discovered peers, it will be set to 5+ r, where r is chosen before each inquiry
process as

r =


1 with probability 0.1

0 with probability 0.8

−1 with probability 0.1

(2.2)
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Figure 2.5: Comparison of eDiscovery and STAR in different environments[HS12]

with the intention of being able to discover the majority of devices within a shorter
inquiry time while lowering energy cost.

The inquiry interval is adapted similarly, with the value being increased by 10+ r when
two consecutive inquiry processes did not discovery any device, and resetting it to
10+ r when discovering a peer. The interval is also modified during consecutive rounds
of inquiry procedures which discovered peers. When the number of devices discovered
in the current round is larger than in the previous one, the interval will be decreased
by a predetermined value I. In the opposite case, it will be increased accordingly. The
global parameters N and I influence the number of discovered peers and the energy
consumption. Lower values lead to lower average inquiry window lengths and inquiry
intervals. Basically, these parameters determine the aggressiveness of the algorithm.

In the paper, the algorithm is compared to STAR in three different environments. Each
experiment ran for 30 minutes and limited the inquiry interval of STAR and eDiscov-
ery to be between 10 and 200 seconds. In this setup, eDiscovery discovered more peers
than STAR while consuming less energy. Figure 2.5 depicts a comparison of the two al-
gorithms, in relation to a discovery scheme that constantly runs the inquiry procedure.
In these experiments, the eDiscovery algorithm adapted to the number of discovered
peers quicker than STAR.
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2.3. ADAPTIVE DISCOVERY

2.3.3 Jyotish

In [VDN11], the authors present a framework for predicting the movement of peo-
ple. They try to provide a system to answer three questions they deem fundemental
to several research domains, including wireless networks. These questions are: “(1)
where will the person stay at a future time (i.e., location)?, (2) How long will she stay
at the location (i.e., stay duration)?, and (3) Who will she meet (i.e., contact)?” Their
solution is based on a combined WiFi/Bluetooth trace, which is further described in
[VNRG10]. The trace incorporates captured MAC-adresses from Bluetooth- and WiFi-
devices (mostly Access Points) on the University of Illinois campus. The framework
first comprises the WiFi records into locations. The Bluetooth-records are then assigned
to these locations using a Naive Bayesian classifier. These records with assigned loca-
tions are used as input for a location predictor (question 1), a stay duration predictor
(question 2) and a contact predictor (question 3).

The construction of all three predictors is done using two parameters: type of day (υ)
and time slot (τ). The types of day are υ ∈ {weekday, weekend}, and each day is divided
into timeslots of 1, 2, 4, etc. hours. Given the relation C as the Bluetooth-records with
location, each record r ∈ C is mapped into the type of day and the timeslot, based on
this records scan time. Each movement predictor for a person p is a record X where
X = {υ1, τ1}. The output is the location, duration at the location and contacts for
the type of day and during this time slot. The location and contact predictors use the
following Naive Bayesian classifiers:

LX = arg max
k

{P (υ = υ1 | Lk) P (τ = τ1 | Lk) P (Lk)} (2.3)

UX = arg max
j

{
P
(
υ = υ1 | uj

)
P
(
τ = τ1 | uj

)
P
(
uj
)}

(2.4)

where Lx and Ux is the most likely location and contact for the input query X, respec-
tively. Both are easily modified to return a number of most likely locations or contacts.
The duration predictor is based on the location predictor, assuming it returns the top-k
locations. It will predict the stay duration for each of these locations.

The predictors are evaluated based on the dataset mentioned before. Each of them are
trained with a set of 80% of the records and then tested with a set of 200 randomly
selected records. When using the location predictor to get the 3 most likely locations,

23



CHAPTER 2. DISCOVERY IN DELAY TOLERANT NETWORKS

the predictor had an accuracy of more than 80% for about 85% of the nodes tested. Ac-
cording to the researchers, the duration predictor performed considerably well. 80%
of nodes had about 60% correct predictions, and 40% of nodes had 80% correct predic-
tions. Like the location predictor, the contact predictor performed better with a larger
number of likely contacts. When using the 7 best contact predictions, 80% of nodes
obtained more than 70% accuracy, and 60% correctly predicted 80% of contacts.

2.3.4 Other

Drula, et al[DARD07] proposed two different algorithms based on discrete discovery
states. Their solution depends on low-level access to the Bluetooth discovery mech-
anism. They derived 5 states of discovery, based on the scan window, scan interval
and residence time in inquiry and inquiry scan mode. These states are computed to
optimize either power consumption or mean discovery time, from most aggressive (in
terms of energy consumption) to least aggressive. Access to low-level functionality
also has the potential to speed up the general discovery process. The two algorithms
are based on recent activity and location of past activity. The first scheme lets the device
switch to the most aggressive state when another device is discovered and goes back
to less aggressive schemes when no devices are seen for a certain amount of time. The
latter scheme depends on a global positioning system to save locations of past contacts.
More aggressive modes are used when the device approaches a place where contacts
have been seen previously. Both schemes are evaluated in a simulation. For the loca-
tion scheme, the simulation space is divided into a grid. Each node counts the devices
discovered in each of the cells. The discovery state in a cell is chosen as function of the
device count in the current cell and the maximum device count of any cell.

Iyer, et al[IL12] proposed an algorithm called Nest which tries to concurrently adjust
parameters of the discovery on all participating nodes. Nest contains two components,

1. a consensus algorithm for the beaconing probability, and

2. an estimator for the local neighborhood size.

Each node in the network has an adaptive probability for which it will send a packet at
a given time. Each of these packages will contain a node identifier and the aforemen-
tioned probability. The consensus algorithm tries to converge the transmission proba-
bility to a local optimum. This happens for all nodes that are close to each other. The
neighborhood size estimator will then adjust the local values “towards the reciprocal
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of the local density of nodes, [...] based on observed statistics of the communication
channel”[IL12].

Ingelrest, et al[IMSR07] devised an algorithm that adapts the discovery frequency with-
out needing any additional hardware like GPS. It is based on the assumption that the
beaconing should be adapted to the speed of nodes. Their TAP5-algorithm adjusts the
frequency based on the turnover of nodes. Every node computes the turnover after each
discovery process by managing a neighborhood table. The turnover is equal to the ra-
tio of new neighbors to the current total number of neighbors. If the turnover is high,
the discovery frequency is deemed too high, because there are not enough changes in
the neighborhood table. If the turnover is very low, the discovery frequency should be
higher.

A protocol that has been developed to be more efficient than the previously mentioned
TAP is proposed in [LM11]. The protocol uses an Autoregressive model to predict the
current nodes location, along with the locations of other nodes in the vicinity. Each
node divides the time domain into slots, whose length λ is equal for every participat-
ing node. At the start of each time slot k, a node samples its own position. Based
on the time series of position samples, each node applies a simplified autoregressive
(AR) model to estimate its position X̂k+1 in the timeslot k + 1. If the estimate X̂k+1 is
close enough to the real position Xk+1, meaning the estimation error is under a certain
threshold, it will be fed as a sample into the AR model. If the estimation error is above
the threshold, the samples position will be used instead and node n will send a bea-
con message, containing its ID and the sampled position. Each node m receiving this
beacon will initialize an AR model for node n, estimating its next position. The node n
and every receiving node m will therefore have the same estimate and will be updated
with new samples positions if the prediction of node n is incorrect. According to sim-
ulations, this protocol has a 50% reduced beaconing frequency with a neighborhood
discovery performance as high as the one for TAP.

2.4 Node Discovery in Bluetooth

The Bluetooth discovery process is called Inquiry. Before establishing a connection,
Bluetooth devices usually have to discover each other. The inquiry process depends on
two device states, the inquiry and the inquiry scan. The device that inquires is usually

5Turnover based Adaptive HELLO Protocol
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Figure 2.6: Distribution of discovery time[CNC+08]

the one that will initiate a connection to the discovered device, it will therefore be called
master, while the other device is the slave. The master will transmit identification (ID)
packets and the slave device will respond with frequency hopping sequence (FHS) packets
when receiving an identification packet.

Bluetooth uses a band of 79 frequencies between 2.402 GHz and 2.480 GHz. 32 distinct
frequencies are chosen for the inquiry process, which are then split into two trains of 16
frequencies each. It takes 16 timeslots of 625µs for the transmission of one train. Each
train is repeated 256 times before switching to the other train. To minimize error in
collecting FHS packets, the trains are switched 3 times, for a total number of 4 trains.
The whole inquiry takes 256 ∗ 4 ∗ 10ms = 10.24s.

A device in the inquiry scan mode will listen on one of the same 32 frequencies men-
tioned before, but for 2048 time slots. After 2048 slots, another frequency is chosen. If
the device receives an ID packet, it will go into its standby or connection state for a
random time between 0 and 1023 slots, to avoid collisions of FHS packets. If the device
receives a second ID packet after a static backoff period, it will wait one slot, then go
into its inquiry response mode, wait another slot and send its FHS packet. Afterwards,
it will go back to its inquiry scan state, in order to discover or rediscover devices.

A theoretical and simulated analysis of the discovery protocol in Bluetooth 1.1 has been
done by Chakraborty, et al[CNC+08]. The result is, that the mean discovery time is
about 2.500 slots, but it varies heavily with many simulations in the range of a few to
about 1000 slots, and many in the range of 4000 slots and more, as seen in figure 2.6.
Bluetooth 1.2 removed the backoff period of 0 to 1023 slots, which potentially doubled
the discovery times in order to avoid collisions, which are unlikely[ZL02].
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3 Location-based Discovery
Optimization

The previous chapter described the research around DTNs, PSNs, discovery and mo-
bility prediction. This is the basis for the development of a discovery scheme, which
exploits location information. This chapter will explain the goals behind the proposed
scheme and describe the algorithms used as the basis for it.

3.1 Goals

Maximizing transfer opportunities should be the main goal of discovery schemes. This
can easily be achieved with a scheme that constantly probes the environment for nodes
to communicate with. The downside to this is the vast ressource needs of discovery
processes. Discovery schemes must therefore optimize certain characteristics within
ressource boundaries. For mobile applications, especially using modern smartphones,
battery power is one of the most valuable ressources. Users expect their mobile phone
to run for a certain amount of time before having to recharge it.

The developed discovery scheme for this thesis should therefore be optimized to maxi-
mize transfer opportunities with low energy consumption. Additionally, it should dis-
cover devices as soon as possible when in communication range, in order to maximize
throughput in the case of short contact times. This is especially important in highly
mobile environments.

To achieve these goals, the proposed scheme will try to exploit spatio-temporal regular-
ity in a users movement and contacts. Adapting to this regularity should incorporate
the previously mentioned metrics. The spatial adaptation will consider previously ob-
served movements of the mobile user, including probable future locations. It will also
be optimized to work within energy constraints, by aiming for a low average number
of discovery processes over a certain amount of time.
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CHAPTER 3. LOCATION-BASED DISCOVERY OPTIMIZATION

3.2 Relevant Metrics

The following section will analyse the metrics and mobility patterns described in the
previous chapter. This analysis will identify the relevant contact and mobility patterns
in human mobility scenarios, in order to assess their use in the proposed discovery
scheme.

The mobility characteristics described in 2.2.1 exhibit different amounts of usefulness
for discovery schemes.

Contact time is a key metric indicating the time during which an inquiry process must
be performed in order to discover a device. As mentioned previously, contact times
tend to be short. This is especially apparent in high-mobility locations like sidewalks
or shopping centres. In these cases, contact times may be as short as a few seconds.
In order for a static scheme to discover every device, the time between discovery pro-
cesses would have to be shorter than the shortest contact time. Schemes that adapt their
discovery frequency to be higher when a new device is discovered may miss these con-
tacts easily when the current frequency is too low. This may be the case when a person
is on his way to work: The discovery frequency adapted to high inter-contact times,
because the person is at home during the night, where new contacts are seen rarely.
The mobile device may not discover any devices on the persons way to work, because
contacts tend to be short. The STAR-algorithm (see section 2.3.1 on page 20) counters
this by increasing the frequency at a predetermined time, like 8AM.

Inter-contact time is useful in predicting future contact possibilities. The power-law
distribution of inter-contact times indicates that a majority of contacts are discovered
within a certain timeframe. This metric is directly linked to the way the STAR-algorithm
adapts its discovery frequency. Whenever a new device is discovered using the current
discovery frequency, the frequency will be adapted according to the power law of inter-
contact times. The variation in the number of contacts seen during different times of
the day leads to differing inter-contact times. Most contacts will be seen in places and
at times where many other people are present. For instance, inter-contact times will be
high during the night, when a person is alone at home. While algorithms like STAR
only consider this distribution in a temporal manner, the proposed scheme aims to
adapt to inter-contact times in a spatial context.

The meeting metrics are useful to adapt to situations where several devices are discov-
ered in a short amount of time. Similar to the TAP-algorithm described in section 2.3.4
on page 25, the discovery frequency should adapt to the number of previously un-
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Figure 3.1: Predictability of the participating users in [CTSC11]. Location predictability
(R) is higher than residence time predictability (Rm)

seen nodes. A high average instantaneous meeting size, for instance, indicates that a new
discovery process will probably discovery the same devices as before. Accordingly, a
lower number indicates a dynamic environment, where each discovery process finds
devices it has not seen before. In a meeting with a lot of devices, the discovery fre-
quency can be lowered significantly if the meeting is static. The average instantaneous
meeting size also correlates to contact times in meetings.

Inter-pair-contact time is important in situations where a contact to a certain device is
desired. This is the case for some routing schemes which predict delivery probability
for each device. A discovery scheme may aim to discover devices with a high delivery
probability. The focus of this thesis will be to discover devices in general, rendering this
particular metric less important.

Considering location and mobility metrics, the proposed discovery scheme aims to ex-
ploit regularity in movement. The most important regularity to consider for this is
in visiting specific future locations. The ability to predict movements lets the discov-
ery scheme adapt to specific spatio-temporal conditions. Figure 3.1 represents the pre-
dictability observed by Chon, et. al. in an experiment outlined in [CTSC11]. The par-
ticipating graduate students used the SmartDC system installed on their smartphones
to capture location visits and stay duration. In the graphs, R = No. o f revisits

No. o f visits represents

the revisit ratio while Rm = Sum. o f previously observed residence time at each revisit
Sum. o f residence time at each visit represents the res-

idence time ratio. As indicated, the revisit ratio is, which leads to a better predictability,
while the stay duration is less predictable. Due to the relatively high predictability of
location visits, the proposed discovery scheme will include mobility prediction.

Another interesting metric is the commonality described on page 12. The low com-
monality for the time slots shows that only a fraction of devices are discovered again,
for example on the same weekday in 2 consecutive weeks. This could indicate that the
number of previously undiscovered unique devices is fairly large. Assuming a person
commonly discovers about the same devices when at work (for example those of col-
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leagues) and at home, the way from and to work, or to other less frequently visited
locations, may see a large influx of unique devices.

3.3 Mobility Prediction

Contact patterns are, like human mobility, predictable to a certain degree, and contact
predictability is based on spatio-temporal predictability. These assumptions are based
on the fact that contact patterns in PSNs are human-centered. The regularity in people
movement, their spatio-temporal preferences and social tendencies may therefore be
exploited to improve discovery schemes. The basic strategy of the proposed discovery
scheme is linking contacts to the geographical locations where they are discovered.
The mobile device is then able to adapt to previously observed contact patterns while
moving towards these locations and while staying at them. To facilitate this, the users
movements and stay duration are predicted. The predictions are used to adapt the
discovery frequency to the users current location.

Mobility prediction depends on the the users regular mobility. It is assumed that there
exist certain places, for instance the workplace and home, where the user spends a sig-
nificant amount of time. There are also several less important places, where visits hap-
pen only occasionally or irregularly. Movement between places generally amounts to
a relatively small fraction of the users time. On the other hand, these movements may
still lead to a significant number of contacts. A person that uses public transportation
on the way to work will probably encounter a large number of other people. To sum-
marize, the assumption is that there are places and movements between places where
a significant amount of contacts are registered.

To exploit this regularity and adapt the discovery scheme to local conditions, the first
step has to be the identification of significant places. This section will describe an ap-
proach based on clustering movement and location patterns. The clusters hold infor-
mation on contacts and mobility, including stay time and movement to other clusters. A
mobility prediction approach will be discussed, which uses this information to predict
future locations. Finally, an adaptive discovery scheme will be proposed, which uses
information from the cluster and information of previous contacts on the way between
clusters to improve the discovery.
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3.3.1 Clustering Locations

Identifying important locations can be done with a clustering algorithm. Clustering
is mostly used to categorize a large amount of data, based on some similarity metric.
Clustering in this thesis will be used to facilitate the mobility prediction and to iden-
tify general spatial regions the user stays in. For these regions, certain mobility and
contact metrics can be identified individually, to adapt the discovery scheme to local
characteristics.

In [ZZXY10], a clustering algorithm for identifying stay regions is described, which will
be used for clustering locations in this thesis. The paper defines the algorithm in terms
of trajectories, stay points and stay regions.

Trajectories T are sequences of location points, defined as T = 〈p0, p1, . . . , pk〉, with
the location points pi = (xi, yi, ti) , ∀0 ≤ i < k containing a timestamp ti and the
two-dimensional coordinates (xi, yi).

Stay points s are regions where a user stayed longer than a time threshold Ts and
within a distance threshold Ds. Stay points are comprised of a set of consec-
utive points within the users trajectory, where each point is within the thresh-
old distance of each other and the elapsed time between the first and last point
is longer than the time threshold. In other words, denote a set of points P =

〈pm, pm+1, . . . , pn〉, where ∀m < i ≤ n, Dist (pm, pi) ≤ Dr, Dist (pm, pn+1) > Ds

and Int (pm, pn) ≥ Ts . Dist
(

pi, pj
)

is the geospatial distance between two points,
Int
(

pi, pj
)

is the time difference between the two points timestamps. A stay
points coordinates are averaged over the coordinates contained in the set:

xs =
n

∑
i=m

xpi

|P| , ys =
n

∑
i=m

ypi

|P| (3.1)

The arrival and departure times are represented as the timestamp of the first (ta
s =

tpm ) and last point (td
s = tpn ) in the set, respectively.

Stay regions r are used to cluster several stay points into geographical regions. A clus-
tering algorithm is used to extract a number of stay regions. The algorithm uses all
extracted stay points S = {s1, s2, . . . , sN} as input to generate geographic regions
containing the stay points S′ =

{
s′m, s′m+1, . . . , s′n|s′i ∈ S, ∀m ≤ i ≤ n

}
belonging

to the same cluster. Stay regions also have their coordinates averaged over the
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Figure 3.2: Stay point (blue) generation from trajectories (black)

containing stay points coordinates:

xr =
n

∑
i=m

xsi

|S′| , yr =
n

∑
i=m

ysi

|S′| (3.2)

The clustering algorithm used in [ZZXY10] is based on dividing the map into a grid.
A grid-based layout with predefined grid sizes constrains the size of clusters, which
would not be the case for other clustering algorithms like k-means clustering or OPTICS
[SJ03]. Each grid is defined as a square of width d

3 . All detected stay points are projected
into the grid, according to their location. Afterwards, grids are clustered by choosing
the grid with the most stay points that has not been assigned to a stay region. Each
grid adjacent to it that has neither been assigned a stay region is clustered with the
chosen grid into one stay region. This process is repeated until there are no more grid
containing stay points. This ensures that each stay region has a maximum size of d×
d. Finally, the stay regions coordinates are computed as shown in the equations 3.2.
This clustering algorithm has the disadvantage that it is not incremental. When the
number of stay points grows, some regions may not be the most significant anymore.
In this case, stay regions could be recreated, which may require a significant amount of
computing power.

Rather than the grid-based approach, the clustering used in this thesis will be based
on clustering stay points according to their geospatial distance, similar to the way stay
points are computed. To extract a number of significant stay regions, each stay region
must contain at least N stay points. This way, only regions that have been visited a
minimal number of times are considered for the mobility prediction. Stay regions are
defined as a a set of stay points S = 〈s1, s2, . . . , sn〉, where ∀1 ≤ i ≤ n, Dist (sm, si) ≤ Dr

and n ≥ N. Each stay point can only belong to one cluster, and new clusters can be
created incrementally.
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3.3. MOBILITY PREDICTION

The clustering algorithm therefore works as follows: Every new location point is com-
pared to the one before. If they are within the distance threshold Ds, a new possible
stay point is created. All following location points are checked for their distance to the
possible stay point. As soon as one location point is outside the threshold, the possible
stay point is checked for the stay time. If it is longer than Ts, the stay point is saved.
Otherwise, it will be discarded. If the stay point is saved, its distance to the existing stay
regions will be compared. If it lies within distance of any of them, it will be assigned to
the closest stay region. If it is not within a stay region, the distance to every other stay
point which is also not currently part of a stay region is computed. If there are more
than N stay points within a distance of Dr, a new stay region is generated.

3.3.2 Predicting Mobility

The basis for the mobility prediction described in this thesis is the users location history.
The location history is defined as a consecutive list of stay regions H = {r1, . . . , rn}.
From the sets of stay points S and stay regions R, the movement between two stay
regions r1 and r2 can be extracted as a list of stay points S′ = {s1, . . . , sn}, where s1 ∈ r1,
sn ∈ r2 and ∀i|1 < i < n, si /∈ R. That is, the first stay point is located in the first stay
region, the last stay point is located in the second region, and each stay point in between
is not part of any region. Generating these movements from the list of stay points
in consecutive order will provide the history of movements. Because the clustering
algorithm works incrementally, stay points between two previously registered regions
may become part of a new region. This would lead to a necessary reconstruction of the
entire movement history. For the sake of simplicity, the algorithm as presented here
will not recreate the mobility history each time a new stay region is generated.

After constructing the movement history, a mobility prediction algorithm can be used
to infer future location visits. These predictions allow the discovery scheme to adapt
its discovery frequency to current and future conditions. Markov-based prediction al-
gorithms are widely used because they provide good accuracy while being easy to im-
plement, as described in section 2.2.3 on page 17. In this thesis, the Order(1) Markov
predictor will be used. While the O(2)-predictor might be more accurate in some cir-
cumstances, it has a higher failure rate due to the fact that a larger number of recent
location sequence may not have been encountered before. Maintaining a low failure
rate would necessitate a fallback-scheme to the O(1) Markov predictor, increasing the
amount of computation needed to predict a location.
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Next location Probability

a 3/6
b 0/6
c 3/6
d 0/6

(a) Probabilities for the O(1)-
Markov predictor

Next location Probability

a 2/6
b 0/6
c 3/6
d 1/6

(b) Probabilities for the O(2)-
Markov predictor

Table 3.1: Markov predictor probabilities for the location history
H={ababcadabcababcbab}

Markov schemes use the context of the recent k locations L (n− k + 1, n) = ln−k+1, . . . ln,
extracted from the location history H, to predict the next location. The order-k Markov-
predictor, using the sequence of last k locations including the current location, com-
putes the probability that the next location will be ln+1 as follows:

Pk (ln+1) =
N (L (n− k + 1, n + 1) , H)

N (L (n− k + 1, n) , H)
(3.3)

Here, N (L, H) denotes how often the location sequence L has been encountered in
the location history H. Consequently, the probability will be 0

1 = 0 if the context
L (n− k + 1, n) has never been encountered before. In this case, the Markov-predictor
is unable to give any prediction. Otherwise, the location with the most probability
to be visited next can be found. For example, considering the location history H =

{ababcadabcababcbab}, the O(1) and O(2)-Markov predictors would compute the prob-
abilities for the next location shown in table 3.1, based on the current context of L (b)
and L (a, b), respectively. As shown, the next location would most probably be location
c, although the O(1)-predictor predicts the same probability for location a.

To ease the computation of probabilities, a graph can be created, where the locations are
graph nodes and each edge is a movement from one location to the next. The number
of movements can be attributed to the edges. For the location history mentioned before,
the mobility graph for the O(2) Markov predictor would look like the one in figure 3.3.

The location prediction will usually happen when a person just left a stay region. In
this case, the algorithm will try to predict the next location. Contacts may be mapped
to the transition between the region the user just left and the probable next region, as
well as the regions themselves. This allows the discovery scheme to adapt to transitions
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Figure 3.3: Mobility graph with a context of 1 for the location history
H={ababcadabcababcbab}

and regions. The mapping of location will be described next.

3.3.3 Mapping Contacts to Locations and Paths

In order to be able to adapt to stay regions and movements between them, contacts have
to be associated to the place they were registered at. The discovery scheme relies on
spatial and temporal information, which is why contacts are defined as c = {x, y, t, I},
with x and y as the coordinates of the location this contact has been registered, and t as
the time the contact occured. I may contain additional information, most importantly
an unique identifier, which is used to differentiate the contacts between those to newly
discovered devices and those to devices discovered before.

Based on the location and time information, a contact can be directly mapped to a loca-
tion point. Consequently, the contacts registered in stay points are those mapped to the
location points contained in it. A number of contacts will also be registered outside of
the stay points. These contacts are easily mapped by considering the time they are regis-
tered. For a movement between two stay points s1 and s2, the list of contacts is defined
as Cs1s2 = {c1, . . . , cn}, where ∀1 ≤ i ≤ n, ct

i > Departure (s1) and ct
i < Arrival (s2),

with the departure and arrival times of the stay points being the timestamp of their last
and first location point, respectively. Contacts in stay regions will be the those made in
and between all the stay points contained in the region. Because of the fact that stay
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CHAPTER 3. LOCATION-BASED DISCOVERY OPTIMIZATION

regions and stay points are created incrementally, the number of contacts previously
observed does not need to be queried each time the user changes location or arrives at
a new stay region.

The list of contacts in stay regions and in movements between the stay regions have
to be put into a form usable by the discovery adaptation. The number of contacts in
the list, for instance, does not provide enough information on the actual distribution of
contacts in a region. The discovery will be adapted to the contact distribution in stay
regions and in movements between regions based on the current time. The contact dis-
tribution for stay regions and paths will be calculated as the ratio of contacts discovered
on an hourly basis. The distribution or each stay region and each transition between
stay regions is thus divided into 24 buckets. For every hour h, the contact distribution
is D(h) = No. o f contacts discovered in h

No. o f contacts discovered . This allows the discovery algorithm to adapt to the
ratio of devices previously discovered at the current time, in the current location.

3.4 Discovery Adaptation

The adaptive discovery proposed in this thesis is largely based on the eDiscovery al-
gorithm described in section 2.3.2, while incorporating insights from human mobility
metrics and the STAR algorithm. The eDiscovery algorithm only varies the inquiry win-
dow and the inquiry interval, while all other values are statically chosen. In particular,
the minimum and maximum values for the inquiry interval were set to be between 10
and 200 seconds. These values were prudent for the environments outlined in [HS12],
especially due to the fact that each experiment only lasted for 30 minutes. STAR, on the
other hand, was evaluated over much larger timespans, and its relatively high energy
consumption during the day was outweighed by high inquiry intervals of up to 1800
seconds during the night[WSM07]. This is not accounted for in the evaluations made
by Han[HS12], indicating that some of STARs assumptions are still relevant in certain
situations and over larger timespans.

In eDiscovery, the adaptable parameters are the inquiry window and the inquiry in-
terval. For some systems, most notably the Android operating system, the inquiry
window can not be changed by default. In the case of Android, an application would
have to get “root” privileges from the system, but most Android phones do not provide
these privileges. The adaptive discovery proposed in this thesis will therefore use the
default inquiry window of 10.24 seconds and focus on adapting the inquiry interval. To
improve on the basic premise of eDiscovery, the proposed discovery scheme will adapt
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3.4. DISCOVERY ADAPTATION

Algorithm 3.1 Calculate the new inquiry interval based on the previous interval and
the current contact distribution
1 def calculate_interval(interval, contact_distribution):
2 peers = inquire()
3 if peers is 0 and last_peers is 0:
4 interval += 10 + r
5 elif peers is not 0 and last_peers is 0:
6 interval = 10 + r
7 elif peers > last_peers:
8 interval -= I
9 elif peers < last_peers:

10 interval += I
11
12 max_interval = i_low + contact_distribution * (i_high - i_low)
13
14 if interval > max_interval:
15 interval = max_interval
16
17 last_peers = peers
18 return interval

the value chosen for the minimum and maximum inquiry interval, which eDiscovery
set to 10± 1 and 200 seconds, respectively. This interval will be adapted based on the
calculated contact distribution, as described in the previous section. By doing this, the
scheme can adapt to situations where contacts are rarely seen in a dynamic way. This
is more flexible than STAR, which increases the expected number of incoming contacts
at a specific time, namely 8 AM. The proposed scheme, on the other hand, will adapt to
lower intervals when the contact distribution changes, which may be at 8AM for peo-
ple who go to work at this time. Yet, for people who work night shifts, this may not be
the case. The discovery scheme also aims to be more dynamic than eDiscovery, which
sets the maximum inquiry interval to fairly low values. In situations where no contacts
are seen for a longer duration, the interval will still be relatively high, thus consuming
more energy than necessary. When increasing the maximum interval of eDiscovery to
higher values, it may not be able to adapt to sudden changes in the contact distribution.

The actual algorithm to compute the discovery interval is nearly identical to eDiscovery.
The two differences are:

1. The inquiry window will not be adapted by default. This will also make the al-
gorithm adaptable for technologies other than Bluetooth, which may not be spec-
ified to have a variable inquiry window. The proposed scheme still allows the
adaptation of the inquiry window in situations in which the technology and sys-
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tem would be able to.

2. The maximum inquiry interval will be based on the contact distribution at the
current location or on the current path. The path to which the scheme adapts
to will be the one predicted the mobility prediction algorithm. The location to
which the scheme adapts to will be the one the device is currently located in. The
locations are equivalent to the stay regions described previously, while the paths
are those between the stay regions.

The current maximum interval will be allowed to vary between two values Ilow and
Ihigh. The actual maximum interval will be calculated as I (h) = Ilow +D (h) ∗

(
Ihigh − Ilow

)
,

with D (h) being the calculated contact distribution at the current location or path, at
the specified hour. Simply put, the maximum interval will be reciprocally proportional
to the contact distribution. Algorithm 3.1 shows the basic algorithm. It will adapt the
interval similar to eDiscovery, but will set the maximum interval based on the calcu-
lated value. The values I and r are the same as those described for eDiscovery in section
2.3.2. I can be set to different values to several different values to make the algorithm
more or less aggressive.
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4 System Design and Implementation

In this chapter, the logging application used to log mobility and contact data will be
described. The description will begin with the basic, event-based data model used in
the application. The following section will provide the data model used to store the
mobility data, including stay regions and stay points. This data will be put in con-
text by a description of the general application architecture. This architecture is built
to be integrated into the Android operating system. Along with the architecture, the
implementation of the discovery scheme will be outlined.

4.1 Logged data

The system uses an event-based approach to capturing all necessary data, including
contacts and location information. Each event consists of a location with a timestamp,
the actual time the event was recorded and event-specific additional information. This
is direct a representation of the way the Android system handles certain kinds of tech-
nologies. For Bluetooth, the start and end of a discovery process are registered as seper-
ate events. Discovering a device during this time is also its own event. WiFi scans are

Location
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Longitude

Timestamp

Event

Timestamp

Accuracy

Bluetooth Device

WiFi Device

MAC SSID

Name

RSSI

MAC

Type Bonding State

1 : M

ID ID

0,1 : M

0,1 : M

Type

Figure 4.1: Entity relationship diagram of mobility and contact data
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Figure 4.2: Entity relationship diagram for stay points and stay regions. Location and
Event attributes omitted for brevity, see figure 4.1 on the previous page

handled differently, where the application is only informed when the scan is finished
by receiving a list of nearby devices. Location information is captured by the system
in the background. Applications can register for updates from the Mobile Positioning
System (MPS), which will send location information as soon as it is available. For this
reason, the system captures the time of the actual event and the time of the last location
fix seperately.

As seen in figure 4.1 on the previous page, there are no entities for the Bluetooth dis-
covery process. These events do not contain any additional data and are therefore only
distinguished by their event type. In order to capture only location information, for use
in the mobility clustering and prediction, an additional location event type is specified.
The accuracy attribute of locations is provided by the Android system. The accuracy is
mainly dependent on the positioning system in use, with network positioning usually
providing accuracy of up to 20 metres and GPS reaching accuracies of a few metres.
Due to the clustering used in the system, the locations do not need to be overly accu-
rate. The mobility prediction algorithm only considers fairly large regions.

4.2 Clustering and Mobility Prediction

Based on the captured location points, stay points and stay regions are computed. With
each new event, the captured location is compared to the last known location. If the
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current location is within the specified distance threshold of the last location, a new
trajectory is generated. New location points are added to this trajectory as long as the
location is within the bounds of the trajectories first location. As soon as the location is
outside of this boundary, the time threshold is checked. If the time difference between
the first and last locations in the current trajectory is higher than the time threshold,
a new stay point is generated. For this stay point, the location is computed once as
the average of the trajectories locations. Additional information, like the arrival and
departure time at this specific stay point, can be computed from the trajectories first
and last locations, respectively. Contact times and locations in stay regions and stay
points are associated via the location table. For each trajectory in a stay point, the
contact events can be selected that correspond to these locations.

Because contacts could happen in stay regions, but their location point is not part of a
stay point, a stay regions contacts will be selected and cached based on their location
information. To enable a fast mobility prediction, transitions between stay regions are
saved in a seperate table, as soon as they are discovered. Furthermore, to accomodate
all contacts made in transition between stay regions, transitions reference bluetooth
contact events in a seperate association table.

4.3 Application Architecture

The application uses several features of the Android API to provide extensibility and
to allow other applications to benefit from it. The basic components of Android appli-
cations are Activities, Services, Content Providers and Broadcast Receivers1. Activities are
generally what a user sees when running an application. Each activity is usually one
screen with which the user can interact.. Services provide a way to run operations in
the background, even when no activity of the application is currently visible to the user.
Content providers grant access to application data for the application itself or for other
applications. They may use several different backends for storing the date, including
files, SQLite databases or even servers accessed over the network. Lastly, broadcast re-
ceivers respond to events from the Android system. These events include state changes
or events from wireless technologies, as described in section 4.1 on page 39.

By using the previously mentioned components, the application is able to be integrated

1Further information is available at http://developer.android.com/guide/components/
fundamentals.html
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Figure 4.3: Application architecture

into other systems by providing mobility and contact traces, as well as a dynamic dis-
covery approach. The applications architecture is depicted in figure 4.3.

The Discovery Activity is the main entrance point of the application. From here, the
Discovery Service and the Configuration Activity can be started. Configuration options
include choosing different discovery schemes, which include the one proposed in this
thesis as well as static schemes, which start the discovery or scan process in a fixed
interval. It is also possible to upload the files created by the File Logger to a server.
Additionally, the discovery activity shows a list of events that have recently been regis-
tered.

The Discovery Service is started by the main activity and runs in the background un-
til it is explicitly stopped. It will initialize a list of Discovery Agents which have been
designated by the configuration activity. Discovery Agent is a simple marker interface,
requiring no methods to be implemented by classes marked by the interface. All com-
munication between components is based on a system similar to publish-subscribe,
which will be described later. The service also initializes the File Logger which writes all
events to files on the local filesystem.

The Content Provider is the main component to provide access to the event data to the
application. It publishes an interface to the data described in sections 4.1 on page 39
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and 4.2 on page 40 in a SQLite-database. Other components are able to use this in-
terface to store and access the basic mobility and contact data, as well as the computed
data including stay points and stay regions. Using a content provider also enables other
applications installed on the system to access this data. This is especially useful for ap-
plications implementing DTN-functionality. These applications are able to implement
routing based on the provided data, without the need to gather this data themselves.
The storage package also contains a simple class that logs all registered events to local
files.

All classes related to clustering and mobility prediction are contained in the mobility
package. These classes directly access the content provider, in order to store and access
registered stay points and stay regions.

Communication between the aforementioned components is done via the Event Hub.
This hub also provides an interface to the events generated by the Android system. As
a matter of fact, the event hub is a broadcast receiver, registered to receive all system
events related to WiFi and Bluetooth communication. These events are routed through
a Local Broadcast Manager to which most of the other application components register.
For instance, the Bluetooth Discovery Agent will register for bluetooth events like the
start and end of a discovery process, as well as the discovery of a new device. Most
events used to communicate between components of the application will in turn be
routed to the global Broadcast Manager. This includes predictions about future locations,
generated by the mobility predictor. A prediction event will be used by the bluetooth
discovery class to adapt its discovery. Similar to the way the content provider lets other
applications access the data, these broadcasts will also inform other applications of the
current state of the discovery application. Basically, another DTN-application only has
to start the discovery service implemented here and listen to global contact events in
order to take advantage of the adaptive discovery.

The discovery scheme is designed to be integrated into the application as a discovery
agent. Figure 4.4 depicts the general data flow of the application. The upper part is
used for sensing and integrates the positioning system as well as the Bluetooth discov-
ery agent. Every sensing event, from locations to bluetooth discoveries, will be used
by the clustering algorithm. The clustering algorithm creates clusters on the fly. Every
event will include a location, from which the clustering creates stay points and stay re-
gions. The clustering components will also check for mobility, by comparing each new
event location against the current location. These movements are relevant in two cases:
Entering a region and leaving the current region. If the user leaves the current region,
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Figure 4.4: Basic operation cycle for the adaptive discovery scheme

the mobility prediction is triggered. The Markov predictor will access the stored transi-
tion data from the content provider and calculate the most probable next location. This
location is used by the distribution calculator, along with the current hour of the day, to
compute the current contact distribution. The contribution, in turn, will be used by the
Bluetooth discovery to calculate the maximum inquiry interval for the current location
at the current time, effectively closing the circle. The distribution calculator will also be
informed when the user enters a stay region. Additionally, the clustering component
updates the transitions between stay regions with the transition from the previous lo-
cation to the one the user just entered. This transition includes all contacts made during
the movement, so that the distribution calculator can compute the distribution the next
time this specific transition is predicted.

Some other events may also trigger certain updates. If the hour of the day changes, the
distribution calculator will update the distribution, which will also update the maxi-
mum inquiry time of the Bluetooth discovery.
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5 Evaluation

An early version of the Android application was used to capture real mobility data to
test the algorithms. The application logged all Bluetooth and WiFi events, along with
the location reported by Androids WPS, to local files. The data was gathered using
static discovery algorithms, which started the WiFi device scan and the Bluetooth dis-
covery every 30 seconds. Table 5.1 shows the amount of different events registered and
different kinds of Bluetooth devices encountered during nearly 3 months of running
the application on one device.

Note that the number of WiFi scans is significantly higher than the number of Bluetooth
inquiries, despite the fact that the application itself only starts both of them in an inter-
val of 30 seconds. This discrepancy is explained by the way Android handles the WiFi
scanning under certain configuration options. In the case of the mobile phone used,
Android was configured to scan for open WiFi Access Points, which the Android sys-
tem seems to perform in an interval much smaller than 30 seconds. The results of these
scans were also registered by the application. Another factor is the way the developed
application handled the interval between subsequent scans. The scanning and inquiry
procedures were scheduled to run in 30 seconds from the time the last scan finished.
WiFi scans typically take about one second to finish, while the standard Bluetooth in-
quiry runs for 10.24 seconds, as described in section 2.4.

The device type was included to get an idea of the fraction of devices that would be
capable to participate in a PSN. In general, this would be the case for mobile phones
and laptops, although the latter mostly experience a much smaller amount of mobility.
As can be seen in the table, 90% of unique devices discovered during the data gathering
were in fact mobile phones. Of course, mobile phones are only discovered when they
are set to be in inquiry scan mode. This is usually not the case for Android phones,
which have to be set to be discoverable manually or through an application explicitly
telling the system to be discoverable. The widespread use of smartphones, with An-
droid being one of the most widely used smartphone operating systems, means that
this number could potentially be much higher. The standard mode of not being discov-
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Event Number of events

Bluetooth inquiries 91.960
Bluetooth device found 17.631

Unique Bluetooth device found 2.735
WiFi scan 1.017.097

Unique WiFi device found 13.454
Location points 261.656

(a) Number of events registered

Device Type Number of Devices Percentage

Phone 2468 90 %
Computer 127 4,6 %

Other (Audio/Video, Toys, etc.) 140 5,6 %

(b) Bluetooth devices encountered

Table 5.1: Data acquired over a period of about 3 months from one device

erable will probably not be changed until DTN and PSN applications become standard
on mobile devices. The increasing amount of mobile network traffic, along with the
possibility to lessen the strain on the infrastructure with DTN applications, may change
this in the future. On the other hand, the number of WiFi Access Points discovered is
much larger, and WiFi provides a higher bandwidth. Some mobile phones are also ca-
pable of using WiFi in an ad-hoc mode, similar to the way Bluetooth is used currently.
Using WiFi in certain circumstances may be more desirable. Bluetooth is still in active
development, with the latest specification with version number 4.0 released in 20101.
Since version 3.0, Bluetooth also provides data transfer over a different physical layer,
including WiFi. This enables Bluetooth to be used for device discovery and session
initiation, while a technology with more bandwidth is used to transfer data.

The following sections will evaluate the algorithms described in this thesis by using the
captured data. Figure 5.1 shows all locations where a Bluetooth device was discovered.
There are easily identifiable regions and paths where contacts seem to be common. In
fact, the large number of contacts seen slightly left of the upper middle part of the
map is contains the home location of the person who carried the device. The lower
right corner is the approximate location of the workplace and university of this person.

1See http://www.bluetooth.org/Technical/Specifications/adopted.htm for all Bluetooth specifications
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Figure 5.1: Locations of discovered devices from the captured data

Incidentally, the large arc from the home location to the lower right is directly on top of
the public transportation railway.

First, some effects of different parameters for the clustering algorithm will be shown.
Based on a subset of these parameters, the mobility prediction will be evaluated. Af-
terwards, the discovery scheme will be compared to eDiscovery (see section 2.3.2). All
evaluations will be done with the data captured from the Android application, using
simulation scripts that implement the algorithms and test them on the logged data.

5.1 Clustering and Mobility Prediction

To evaluate the generation of stay regions and stay points, the algorithm was tested
with a set of parameters. Ideally, the stay regions depict a number of places that are
actually significant, in that the user stayed in them for a significant amount of time. For
the evaluation, the distance threshold for stay regions was set to Dr = 100m and the
minimal number of stay points in a region was set to N = 10. Higher values for the
number of stay points in stay regions mostly lead to significantly less stay regions. The
distance threshold for stay regions was always set to 100m, because this is a range that
is mostly within the accuracy of network positioning systems, at least in urban areas.
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Figure 5.2: Number of generated stay points and stay regions for different thresholds

Using these basic static values, the stay point time thresholds were set to be between 30
and 300 seconds, in steps of 10 seconds. Additionally, the stay point distance threshold
was set to be from 10 to 50 metres, in steps of 5 metres. Figure 5.2 contains the surface
plots for stay point and stay region generation, based on these values. The curves
show significant differences in stay point generation for the first few changes in the
thresholds, with the differences gradually declining. The stay point generation seems
to be affected fairly equally by differences in the time and distance threshold. Stay
regions, on the other hand, seem to be largely unaffected by differences in stay region
size after about 20 metres. The reason for this is most likely the exceptionally large
number of stay points when using the lowest possible values. This indicates that the
lowest values may be irrelevant, because staying within 10 metres for more than 30
seconds is extremely likely, and does not constitute any actual notability. Values for the
distance threshold of stay points will be considered for up to 30 metres. Higher values
seem irrelevant for the stay region generation. For the time thresholds, values of up
to 120 seconds will be considered, because higher values reduce the number of stay
regions too much. Higher values will also lead to later stay region generation, because
the number of stay points grows more slowly.

In Figure 5.3, the locations of generated stay points and stay regions are shown for
two sets of parameters. Doubling the parameters to 60 seconds and 20 metres already
affects the generation of stay regions significantly. As can be seen, stay regions tend to
clump together in some areas, and using higher threshold values reduces this clumping,
leading to more significant regions. The choice of clustering parameters also affects the
mobility prediction. When the created stay regions are significant enough, the mobility
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(a) Stay Points (Ds = 10m, Ts = 30s) (b) Stay Regions (Ds = 10m, Ts = 30s, Dr = 100m,
Nr = 5)

(c) Stay Points (Ds = 20m, Ts = 60s) (d) Stay Regions (Ds = 20m, Ts = 60s, Dr = 100m,
Nr = 5)

Figure 5.3: Locations of generated stay points and stay regions for Ds = 10m, Ts = 30s,
Dr = 100m, Nr = 5 and Ds = 20m, Ts = 60s, Dr = 100m, Nr = 5
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Clustering Parameters Correct Predictions Predictions Accuracy

Ds = 10m, Ts = 30s 442 844 52,4%
Ds = 20m, Ts = 60s 398 701 56,8%
Ds = 20m, Ts = 90s 379 574 66,0%
Ds = 20m, Ts = 120s 381 567 66,1%
Ds = 25m, Ts = 90s 407 655 62,1%
Ds = 30m, Ts = 120s 377 577 65,3%

Table 5.2: Accuracy of mobility prediction for different clustering parameters

prediction will provide better results.

To evaluate the mobility prediction, it will be run parallel to the clustering algorithm on
the captured data. The next probable location will be predicted as soon as the system
detects that the user left a stay region. Based on the transitions stored for the stay region
the user left, the next stay region likely to be visited next will be returned. When the
user enters a stay region, it will be checked with the prediction. The result of the check
is used to calculate the prediction accuracy as Ap = No. o f correct predictions

No. o f predictions . The prediction
is tried with a subset of parameters for the clusters. As before, the distance threshold
for stay regions is 100 metres, and the threshold for the number of stay points for each
region is 10. Table 5.2 shows the 6 sets of parameters tested for the mobility prediction.
As can be seen, the prediction accuracy is correlated to the generation of stay points.
This is expected, because the clustering algorithm already identifies regions that have
some significance by being visited by the user at least a number of times. The prediction
accuracy directly influences the discovery scheme, because it relies on the transition
information provided by the predictor. In the case of Ds = 20m, Ts = 120s, 66% of
transitions were correctly identified, so in all of these cases, the discovery scheme could
benefit from the prediction. The discovery evaluation in the following section will use
this parameter set.

5.2 Discovery

To evaluate the developed discovery scheme, it will be compared to eDiscovery, based
on the data captured by the Android application, which used a constant probing scheme
with an interval of 30 seconds and the standard inquiry window of 10.24 seconds. Us-
ing this dataset compare the discovery schemes with different parameters under the
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5.2. DISCOVERY

same conditions. On the other hand, the dataset is fairly small and fairly specific, due
to the fact that it was captured using only one phone on one person. Nevertheless,
the comparison will provide some insights on the efficiency of the two algorithms. For
eDiscovery, three different sets of values for N and I are chosen. The following evalua-
tions will refer to these as e(5,1), e(7,3) and e(15,10). Additionally, the maximum inquiry
interval will be set to 200 seconds for eDiscovery, which is the time it uses as presented
in [HS12]. For the proposed scheme, the low value for the maximum interval will be
200 seconds, like in eDiscovery, and the high value will be 1800 seconds, like in STAR.
To evaluate the impact of adapting the inquiry window, the proposed scheme will be
evaluated with and without this adaptation. Accordingly, the values for N and I will
be the same as for eDiscovery. The proposed scheme will be designated as s(5,1), s(7,3)
and s(15,10) for the schemes which adapt the discovery window, and s(1), s(3) and s(10)
for the schemes without adaptive discovery windows.

The captured data can not reproduce the actual contact times, the contacts will therefore
be considered in range for 20 seconds before and after they have been discovered in the
trace. The efficiency of each algorithm will be determined by the duration of inquiry
and the number of contacts found from the trace. The duration of inquiry is the accu-
mulated time in which the device is in inquiry mode. This time is directly correlated to
the energy consumption of the scheme. Figure 5.4 plots the ratio of discovered contacts
to the number of contacts contained in the dataset and the overall inquiry time for each
of the 9 discovery schemes. The eDiscovery variants were tested 20 times each, while
the proposed scheme was tested 10 times for each variant. This was necessary, because
all schemes exhibit a random variable which may lead to skewed results. The plots
show the average outcome for all runs. In terms of discovered contacts, the proposed
scheme is consistently lower than the standard eDiscovery scheme. This effect can be
attributed to low maximum inquiry interval of eDiscovery. The developed discovery
scheme will sometimes experience long inquiry intervals, and thereby miss some con-
tacts it did not expect. The difference in the contact ratio is between e(3,1) and s(3,1) is
about 9%, while the inquiry time for s(3,1) is only 56% of the time used by e(3,1). Based
on the evaluation, the assumption that contact patterns can be predicted to improve the
discovery scheme holds true. While the number of contacts discovered was smaller, the
amount of energy saved is significant.
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CHAPTER 5. EVALUATION

(a) Ratio of discovered contacts. eDiscovery exhibits the best ratio, with s(15,10) and s(10) discovering the
least contacts

(b) Length of inquiry over the whole experiment. s(15,10) has nearly half the inquiry time of e(3,1)

Figure 5.4: Comparison of discovery schemes
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6 Conclusions and Discussion

In this thesis, a discovery scheme was proposed that uses location information to re-
duce energy consumption. The scheme is aided by a clustering and a mobility predic-
tion algorithm. The clustering is used to identify significant locations, while the mobil-
ity prediction is used to adapt to movement situations between locations. The scheme
uses previously seen contacts at locations to adapt its maximum inquiry interval. By
doing this, it effectively reduces the overall energy consumption of the node discovery
process by having high delays in low-contact areas and low delays in areas with a high
chance of contact. The scheme was adapted from eDiscovery[HHKM10], to which it
was compared. The comparison, using a mobility and contact trace comprising about
3 months of data, showed that the developed scheme consumed up to 45% less energy,
with only up to 15% less contacts discovered. This indicates the potential in adapting
discovery schemes to locations. A downside to this is the added complexity of the algo-
rithm, and the added computational requirements coming with it. eDiscovery is very
simple and does not rely on information other than the number of peers discovered
in the current probe. The developed scheme uses an incremental clustering algorithm
and mobility prediction to facilitate the discovery. Even though the used algorithms are
fairly simple, alternatives and optimizations are possible.

There are some potential optimizations to the clustering algorithm. Currently, when
a new stay point is found, it will be compared to every unclustered stay point. These
points may accumulate fast when a person exhibits fairly irregular mobility. In this case,
many points may be scattered over the map, without enough points in close vicinity for
them to be considered a stay region. Comparisons to these stay points could be opti-
mized by dividing the map into a grid and automatically assigning any new stay point
to the region it is located in. Any new point would then only have to be compared
to points located in its own and any adjacent grid. On the other hand, the generation
of stay points is directly correlated to the time threshold a user must have stayed at a
place. This computation will therefore only occur every few minutes, on average. The
computational complexity may still be overwhelming, especially on mobile phones.
Another problem may arise in the fact that the number of stay regions is unbounded.
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CHAPTER 6. CONCLUSIONS AND DISCUSSION

The mobility predictor may be affected by this, because it has to compute movement
probabilities between a potentially large number of locations. Additionally, movement
paths have to be recomputed each time a new stay region is generated. The recompu-
tation also necessitates the construction of a new movement history. Further research
on the mobility prediction and clustering could lead to improved algorithms.

A possible improvement to the mobility prediction would be the use of the SmartDC
system described in [CTSC11], which uses adaptive duty cycling to sense location points
and mobility. In contrast to the location sensing used in this thesis, SmartDC employs
an adaptive multi-sensor approach, incorporating WiFi, GPS and network positioning.
This enables localization with room-level accuracy while saving energy in relation to
using, for instance, GPS only. While the network positioning used in this thesis does
not consume a lot of power, its accuracy can be exceptionally low in certain circum-
stances. Additionally, the choice of using an O(1)-Markov predictor could be evaluated
by comparing it to some other predictors. Feature-aided schemes like those that include
time of departure may provide additional prediction accuracy.

Although the discovery schemes were compared using traces of real mobility, the schemes
may behave differently in real experiments, where wireless interference and other fac-
tors may play a significant role. Nevertheless, the evaluation effectively reproduced the
performance of eDiscovery measured in [HS12], which evaluated the algorithm in real
settings. Further studies could aim to reproduce the results of this thesis in simulations,
for instance in the ONE simulator[KOK09], and in real experiments.
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